Die Kristallstruktur von U₂Cr₃Si, U₄Mn₅Si₃ und U₂Co₃Si Von

J. B. Kusma und H. Nowotny

Aus dem Institut für Physikalische Chemie der Universität Wien

(Eingegangen am 25. Juni 1964)

In den Dreistoffen: Uran—T (Ti,V,Cr,Mn,Co,Nb,W)—{Si,Al} werden Legierungen auf dem Schnitt U(T,Si)₂ bzw. U(T,Al)₂ aus den Komponenten hergestellt und röntgenographisch identifiziert *. Es bestehen die ternären Verbindungen U₂Cr₃Si, U₄Mn₅Si₃ und U₂Co₃Si, die sich als mit MgZn₂ isotyp erweisen.

Über die Phase U₂Fe₃Si mit MgZn₂-Typ wurde vor kurzem berichtet¹. Eine analoge isotype Verbindung wurde in der Zwischenzeit auch im System U—Mo—Si bekannt². In der Folge sind weitere Dreistoffe mit Uran als großer Komponente einerseits und Übergangsmetallen (T = Ti, V, Cr, Mn, Co, Nb, W) sowie Silicium als kleiner Komponente andrerseits im Bereich U(T, Si)₂ untersucht worden. In diesen Systemen sind die Verbindungen mit MgZn₂-Typ möglich, weil das Radiusverhältnis $r_{\rm U}/r_{(T, Si)}$. eindeutig größer als 1 ist. Außerdem wurden die Dreistoffe U—Cr—Al und U—Mo—Al mit in diese Untersuchung einbezogen. Dazu wurden in jeder der genannten Kombinationen Legierungen bei 10, 17, 25, 33 At% Si (oder Al) und 33 At% U, wie früher beschrieben¹, hergestellt.

Pulveraufnahmen der Legierungen in den Systemen: U—Cr—Si, U—Mn—Si und U—Co—Si lassen eindeutig das Vorhandensein eines MgZn₂-Typs erkennen. Die Verbindungen wurden in fast homogenem Zustand bei folgender Zusammensetzung gefunden: U₂Cr₃Si, U₄Mn₅Si₃ und U₂Co₃Si. Die Auswertung der Röntgenogramme führt auf nachstehende Gitterparameter (in Å):

^{*} T = Übergangsmetall.

¹ J. B. Kusma und H. Nowotny, Mh. Chem. 95, 428 (1964).

² M. Sikirica und Z. Ban, Internat. Sympos. New Nuclear Materials Technology, Prague, July 1-5, 1963.

U_2Cr_3Si :	$a = 5,12_5;$	$c = 8,26_5;$	$c/a = 1,61_3$
$U_4Mn_5Si_3$:	$a = 5,16_8;$	$c = 7,90_8;$	$c/a = 1,53_0$
U_2Co_3Si :	$a = 5,13_9;$	$c = 7,58_5;$	$c/a = 1,47_6$

Um die Zugehörigkeit dieser Verbindungen zum MgZn₂-Typ zu bestätigen, sind die Intensitäten für die Punktlagen: U in 4 f) (z = 1/6); Cr (Mn, Co) in 6 h) (x = 5/6) und Si in 2 a) berechnet worden. Im Falle

Tabelle 1. Auswertung einer Debye-Scherrer-Aufnahme von U_2Cr_3Si CrK α -Strahlung

(hkil)	$10^3 \cdot \sin^2 \theta$ beobachtet	$10^{\circ} \cdot \sin^2 \theta$ berechnet	Intensität geschätzt	Intensität berechnet
(1010)	67,0	66,6	10	16,8
(0002)	77,8	76,8	7	10,7
$(10\overline{1}1)$	86,5	85,8	10	13,8
$(10\overline{1}2)$	144,6	143,4	10	13,7
$(11\overline{2}0)$	201,9	199,9	40	54,8
$(10\overline{1}3)$	240,2	239,5	60	74,0
$(20\overline{2}0)$	266,8	266,5	7	12,8
$(11\overline{2}2)$	276,1	276,7	50	66,5
$(20\overline{2}1)$	286,3	285,7	20	27,5
(0004)		307,3		1,9
$(20\overline{2}2)$		343,3		0,9
$(10\overline{14})$		373,9		1,3
$(20\overline{2}3)$	439,1	439,4	30	18,6
$(21\overline{3}0)$	466,9	466, 4	5	7,4
$(21\overline{3}1)$	484,3	485,7	15	9,4
$(11\overline{2}4)$	-	507,2		0
$(21\overline{3}2)$		543,2		5,1
$(10\overline{1}5)$	547,1	546,8	35	29,0
$(20\overline{2}4)$		573,8		0,1
$(30\overline{3}0)$	598,8	599,8	35	30,1
$(30\overline{3}1)$		619,0		0
$(21\overline{3}3)$	639,5	639,4	100	100,0
$(30\overline{3}2)$	675,9	676, 5	40	54,0
(0006)	692,1	691,3	7	9,3
$(20\overline{2}5)$	746,2	746,7	90	87,8
$(10\overline{1}6)$	757,5	757,9	10	13,3
$(30\overline{3}3)$		772,7		0
$(21\overline{3}4)$	773,8	773,8	3	3,3
$(22\overline{4}0)$	799,5	799,7	90	90,0
$(31\overline{4}0)$	866,2	866, 3	10	17,2
$(22\overline{4}2)$	876,2	876, 5	40	37,6
$(31\overline{4}1))$	880 7	885,5	40	∫18,3
$(11\overline{2}6)$	009, <i>1</i>	891,2	40	\ 40,5
$(30\overline{3}4)$		907,1		0
$(31\overline{4}2)$	945 9	943,1	100	∫ 69,5
(2135)∫	940,9	946,7∫	100	242,0
$(20\overline{2}6)^{2}$	958.2	957.8	70	87,0

(hkil)	10 ³ • sin ² 9 beobachtet	$10^{\circ} \cdot \sin^{2} \theta$ berechnet	Intensität geschätzt	Intensität berechnet
(1010)	65,3	65,5	7	9,1
(0002))	08 -	84,0)	10	6,1
$(10\overline{1}1)$	80,5	86,5	10	7,3
$(10\overline{1}2)^{2}$	150,2	$149,5^{'}$	5	6,9
$(11\overline{2}0)$	197,7	197,6	30	31,0
$(10\overline{1}3)$	255,3	254,5	40	36, 6
$(20\overline{2}0)$	263,0	262,1	5	6,8
$(11\overline{2}2)$	909 1	280,6)	50	(35,0
$(20\overline{2}1)$	282,4	283,1	50	14,7
$(0004)^{-1}$		$335,9^{-1}$		0,9
$(20\overline{2}2)$		346,1		0,4
$(10\overline{1}4)$		401,4		0,7
$(20\overline{2}3)$	451,2	451,1	10	9,5
$(21\overline{3}0)$	458,2	458,7	3	4,0
$(21\overline{3}1)$	480,8	479,7	5	3,8
$(11\overline{2}4)$	533,1	532,5	3	0
$(21\overline{3}2)$		563,7		2,6
$(30\overline{3}0)$	500.3	589,81	30	(15,8
$(10\overline{1}5)\int$	550,5	590,4f	00	\16,1
$(20\overline{2}4)$		598,0		0,07
$(30\overline{3}1)$		610,8		0
$(21\overline{3}3)$	647,9	647,7	60	54,0
$(30\overline{3}2)$	675,1	673, 8	20	29,5
(0006)	756,0	755,9	5	5,9
$(30\overline{3}3)$		778,8	-	0
(2240)	786.9	786,4)	100	[100
$(20\overline{2}5)\int$	100,0	787,0f	100	
$(21\overline{3}4)$		794,6		2,0
$(10\overline{1}6)$	820,1	821,4	10	9,0
$(31\overline{4}0)$	853, 6	851,9	7	8,6
$(22\overline{4}2)$	879 7	870,4	30	(19,1
$(31\overline{4}1)\int$	012,1	872,9∫	50) 9,1
$(30\overline{3}4)$		925,7		0
$(31\overline{4}2)$	937,3	935,9	15	20,0
$(11\overline{2}6\alpha_1)$	948,3	951,2)	40	34 9
$(11\overline{2}6\alpha_2)$	950,2	954,1∫	- T U	0 1 ,4
$(21\overline{3}5\alpha_1)$	980,7	982,1	100	240.0
$(21\overline{3}5\alpha_2)$	984,1	985,1∫	100	410,0

Tabelle 2. Auswertung einer Debye-Scherrer-Aufnahme von U $_4Mn_5Si$ CrK α -Strahlung

der Verbindung $U_4Mn_5Si_3$ wurde berücksichtigt, daß sich ein Teil der Si-Atome auch in der Punktlage 6 h) befindet. Wie aus den Tabellen 1—3 zu sehen ist, stimmen die beobachteten und berechneten Intensitäten gut überein.

An nicht geglühten U—Cr—Si-Legierungen zeigt sich, daß die Phase U_2Cr_3Si mit veränderten Gitterparametern auftritt (Tab. 4). Es ist offen-

Monatshefte für Chemie, Bd.95/4-5

(hkil)	$10^3 \cdot \sin^2 \theta$ beobachtet	$10^3 \cdot \sin^2 \theta$ berechnet	Intensität geschätzt	Intensität berechnet
(10T0)	66,9	66,3	5	11,3
(1011)	00.4	89,1)	7	(9,2
(0002)∫	90,4	91,3∫	1	(6,4
$(10\overline{1}2)^{2}$	158,3	$157,6^{'}$	5	9,6
$(11\overline{2}0)$	200,5	198,8	40	43,5
$(20\overline{2}0)$	266,8	265,1	5	9,9
$(10\overline{1}3)$	273,0	271,7	60	51,0
$(20\overline{2}1)$	200.2	287,9	60	(24,0)
$(11\overline{2}2)$	290,5	290,1∫	00	(52,0)
$(20\overline{2}2)$		356,4	_	0,3
(0004)		365,1		1,6
$(10\overline{1}4)$		431,4	,	1,3
$(21\overline{3}0)$	465, 1	463,9	3	4,7
$(20\overline{2}3)$	471,2	470,5	5	12,6
$(21\overline{3}1)$	486,9	486,7	10	4,8
$(21\overline{3}2)$	555,7	555,2	5	3,1
$(11\overline{2}4)$		563,9		0
$(30\overline{3}0)$	597,1	596,5	20	23,0
$(30\overline{3}1)$		619,3		0
$(20\overline{2}4)$		630,2		0,14
$(10\overline{1}5)$	637,8	636,7	15	24,4
$(21\overline{3}3)$	670,2	669,3	80	82,5
$(30\overline{3}2)$	688,1	687,8	20	12,7
$(22\overline{4}0)$	795,3	795,4	100	74,6
$(30\overline{3}3)$		801,9	· · · · · · · · · · · · · · · · · · ·	0
(0006)	821,4	821,4	10	11,3
$(21\overline{3}4)$	829,3	829,0	3	4,3
$(20\overline{2}5)$	835,9	835,5	100	100
(3140)	860,9	861,6	10	11,2
$(31\overline{4}1)$		884,4 ₁		(12, 4)
$(22\overline{4}2)$	885,3	886,7	50	26,5 diffus
(10T6) ^j		887,71		18,5
$(31\overline{4}2)$	951,7	952,9	30	34,9
$(30\overline{3}4)$		961,6		0

Tabelle 3. Auswertung einer Debye-Scherrer-Aufnahme von U_2Co_3Si CrK α -Strahlung

sichtlich, daß sich das Homogenitätsgebiet von U₂Cr₃Si nach Glühung bei 800°C merklich verkleinert. Der Ersatz der Cr-Atome durch Si-Atome ruft nur eine geringe Aufweitung des Volumens hervor. Obwohl U₄Mn₅Si₃ und U₂Cr₃Si ein sehr kleines c/a-Verhältnis haben — U₂Cr₃Si weist bis jetzt den kleinsten c/a-Wert unter den bekannten Verbindungen des MgZn₂-Typs auf — ist die Koordination nicht verändert. Man ersieht dies aus Tab. 5, in welcher auch die Atomabstände der Verbindung U₂Fe₃Si zum Vergleich angeführt sind. Die Atomabstände U—U werden beim Übergang von Chrom zu Kobalt kleiner, das heißt, der effektive Radius von Uran ist in U₂Co₃Si mit 1,42 Å erheblich kleiner als der Metallradius von 1,5₄ Å³. Vergleichsweise entsprechen die U—U-Abstände in den kubischen *Laves*phasen UMn₂ und UCo₂ mit 3,10 und 3,03 Å weitgehend dem Wert für 2 $r_{\rm U}$. Die Abstände U—Si ändern sich fast nicht, und das spricht für die Vermutung, daß die Punktlage 2a) durch Si besetzt wird. Die Verkürzung der Abstände *T*—Si weist auf eine starke Wechselwirkung zwischen Übergangsmetall und Silicium hin,

Tabelle 4. Die Änderung der Gitterparameter von U2Cr3Si

Zusammensetzung	a in Å	c in Å	c/a	V in ų
$egin{array}{llllllllllllllllllllllllllllllllllll$	$5,13_0$	$8,26_1$	$1,61_0$	$564,_8$
	$5,14_8$	$8,20_8$	$1,59_4$	$565,_2$
	$5,19_1$	$8,09_5$	$1,55_6$	$566,_7$

Tabelle 5. Die Abstände zwischen den Atomen für die Struktur des MgZn₂-Typs in Systemen UTSi (T = Cr, Mn, Fe, Co) in Å

	U ₂ Cr ₃ Si	U₄Mn₅Si₃*	U₂Fe₃Si	U2Co3Si	
U—1 U	3,10	2,97	2,89	2,84	
-3 U	3,13	3,14	3,12	3,11	
3 Si	3,01	3,02	3,01	3,00	
3 T	3,00	2,97	2,95	2,93	
-6 T	2,96	2,89	2,83	2,80	
Si-6 U	3,01	3,02	3,01	3,00	
-6 T	2,54	$2,\!48$	2,44	2,41	
$T-2~{ m U}$	3,00	2,97	2,95	2,93	
4 U	2,96	2,89	2,83	2,80	
-2 Si	2,54	2,48	2,44	2,41	
-4 T	2,56	2,58	2,57	2,57	

* Ein Teil der Si-Atome befindet sich auch in der Punktlage 6h.

was wiederum den teilweise kovalenten Charakter der Bindung zwischen diesen zum Ausdruck bringt.

In den Systemen U—T—Si (T = Ti, V, Nb, W), U—Cr—Al und U—Mo—Al konnten dagegen keine Verbindungen des MgZn₂-Typs gefunden werden. Die Dreistoffe U—T—Si (T = Cr, Mn, Fe, Co) sind jenen von U—T—Al (T = Mn, Fe, Co) ähnlich, in welchen Verbindungen des MgZn₂-Typs bereits bekannt waren^{4, 5}. Die Fähigkeit von Silicium, den MgZn₂-Typ zu stabilisieren, ist ausgeprägter als jene von Aluminium.

³ Siehe F. Laves, in: Theory of Alloys, Amer. Soc. Met., Cleveland [Ohio] 1956.

⁴ S. Steeb, G. Petzow und R. Tank, Acta crystallogr. [Kopenhagen] 17, 90 (1964).

⁵ G. Petzow und S. Steeb, Vortrag, Stuttgart, 9/10. Dez. 1963.

Diese Gesetzmäßigkeit kann man auch in anderen Systemen zweier Übergangsmetalle mit Silicium bzw. Aluminium beobachten.

Für das effektive Radienverhältnis von Übergangsmetall und Silicium findet man unter Annahme obiger Formeln aus dem Vergleich des Volumens von UMn₂ (C 15-Typ) mit U₄Mn₅Si₃ (C 14) praktisch den gleichen Wert. Dagegen weisen die Volumina von UCo₂ (C 15) und U₂Co₃Si (C 14) eindeutig darauf hin, daß Silicium etwas größer als Kobalt ist^{*}. Auffallend ist jedoch das Volum der Phase U₂Cr₃Si, das größer als jenes von U₄Mn₅Si₃ ist. Ein derartiges Verhalten ist zum Beispiel bei HfCr₂ und HfMn₂, die beide im C 14-Typ kristallisieren, bekannt⁶. Es kann sein, daß gelegentlich eine Abweichung in der Idealzusammensetzung auftritt. So hat *Waterstrat*⁷ bei TiMn₂ einen ausgedehnten Bereich des MgZn₂-Typs bis TiMn_{1,3} beobachtet. Eine teilweise Besetzung der Zn-Lagen durch das große Atom würde dann die Aufweitung erklären.

Der Übergang vom MgCu₂-Typ zum MgZn₂-Typ wurde durch *Laves* und *Witte⁸* ausführlich studiert. Im allgemeinen erhöht die Elektronenkonzentration die Tendenz in der Reihenfolge: MgCu₂—MgNi₂—MgZn₂. In diesem Sinne wäre Silicium, wie dies häufig bei elektronischen Phasen der Fall ist, ein geeigneter Elektronendonor. Es fällt in diesem Zusammenhang auf, daß die meisten Si-stabilisierten *Laves*-Phasen zum C 14-Typ gehören.

Im Falle von NbCr₂ (C 15) und Nb(Cr, Si)₂ (C 14) ist das Volum der hexagonalen *Laves*-Phase nicht viel kleiner (167 \times 2 gegen 343 Å³), was bedeutet, daß hier der effektive Si-Radius nur wenig verschieden von jenem des Chroms ist.

* Volumen (in Å³) von UMn₂ (367); U₄Mn₅Si₃ (183 × 2); UCo₂ (333); U₂Co₃Si (173 × 2); U₂Cr₃Si (187,5 × 2).

⁶ Siehe *M. V. Nevitt*, in: *P. A. Beck*, Electronic Structure and Alloy Chemistry of the Transition Elements, J. Wiley and Sons, 1963.

⁷ R. M. Watertrat, Preprint, University of Illinois, Urbana, 1961.

⁸ F. Laves und H. Witte, Metallwirtsch. 15, 840 (1936).